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We study static and dynamic spatial correlations in a two-dimensional spin model with four-body plaquette
interactions and standard Glauber dynamics by means of analytic arguments and Monte Carlo simulations. We
study in detail the dynamical behavior which becomes glassy at low temperatures, due to the emergence of
effective kinetic constraints in a dual representation where spins are mapped to plaquette variables. We study
the interplay between nontrivial static correlations of the spins and the dynamic “four-point” correlations
usually studied in the context of supercooled liquids. We show that slow dynamics is spatially heterogeneous
due to the presence of diverging length scales and scaling, as is also found in kinetically constrained models.
This analogy is illustrated by a comparative study of a froth model where the kinetic constraints are imposed.
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I. INTRODUCTION

Recently there has been considerable interest in the extent
to which the slow dynamics of glass-forming liquids may be
understood as a result of constraints on the kinetic properties
of a system, rather than on its thermodynamics �1–3�. It has
been shown that kinetically constrained models with trivial
thermodynamic properties �4–6� show a slowing down at
low temperature, accompanied by the stretched exponential
relaxation and dynamically heterogeneous behavior charac-
teristic of glass formers. The diverging time scales arise from
dynamical fixed points at zero temperature �7,8�, associated
with diverging dynamical length scales.

However the only degrees of freedom in these models are
phenomenological “mobility fields” �9�. Excitations in the
mobility field represent regions of the glass-former where
motion is possible. Presumably the energy barriers that pre-
vent relaxation in the system are smaller than average in
these regions, but there remain questions as to how these
degrees of freedom are related to other physical properties of
the glass-forming systems. In particular, is local mobility as-
sociated with some �possibly complicated� local static order-
ing? Is it always necessary to consider dynamic correlators?
Is a mapping from interacting particles to a mobility field
feasible?

An interesting class of models in which mobility fields
emerge naturally from more familiar interacting degrees of
freedom was investigated in Refs. �10,11�. In this particular
case, mobile regions are associated with defects in the spin
fields and these defects have a density that vanishes at zero
temperature, accompanied by a divergence in the relaxation
time of the system. These models therefore provide a spe-
cific, yet informative example of effective kinetic constraints
arising from simple dynamical rules in conjunction with fa-
miliar Hamiltonians with multispin interactions with no
quenched disorder.

In this paper we investigate correlations in the two-
dimensional plaquette model �10–13�. The thermodynamic
properties of the model are those of noninteracting pointlike

excitations. However, when these energetic properties are
combined with a simple spin-flip dynamics, the dynamical
evolution at low temperatures is controlled by large energy
barriers. The relaxation times diverge in an Arrhenius man-
ner consistent with the behavior of strong glasses �14�. This
is accompanied by a diverging length scale associated with
dynamic correlations. Our study therefore illustrates how a
mobility field might arise from a physical interacting spin
system. The resulting dynamic behavior is very similar to the
physics of kinetically constrained models as we show by
comparatively studying a two-dimensional kinetic model in-
spired by the physics of covalent froths �15�. The major dif-
ference is that in the latter case dynamics is directly ex-
pressed in terms of the fundamental excitations and kinetic
constraints are therefore imposed by hand. We show that the
dynamical correlations in both models can be explained in
terms of freely diffusing excitations.

In Sec. II we define the models, study static correlations
and the representation in terms of diffusing excitations. In
Sec. III we study dynamic correlations and Sec. IV contains
our conclusions.

II. PLAQUETTE AND FROTH MODELS

A. The plaquette model

The Hamiltonian of the plaquette model reads �10,11�

H = −
1

2 �
i,j=1

L−1

�ij�i+1,j�i,j+1�i+1,j+1, �1�

where the ��ij� are Ising spins on a two-dimensional square
lattice with free boundary conditions. We specify simple
spin-flip dynamics with rates given by Glauber probabilities.
We denote the linear size of the lattice by L, so that there are
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N=L2 spins in the system. To demonstrate that the thermo-
dynamic properties of this model are trivial, we make the
change to plaquette variables, �pij�, defined as

pij = �ij�i+1,j�i,j+1�i+1,j+1. �2�

The plaquette variables form a dual representation of the spin
system. For a system with N spins, the partition sum over
these N variables is equivalent to summing over �L−1�2 in-
dependent plaquettes, with a final summation over �2L−1�
spins that lie on two orthogonal boundaries of the system.

The result is that excited plaquettes, that is those with
pij =−1, are uncorrelated in space because the Hamiltonian
becomes trivial in the plaquette representation,

H = −
1

2 �
i,j=1

L−1

pij . �3�

Excitations have a density �e�+1�−1 where � is the inverse
temperature. Also, the free summation over boundary spins
means that all states have a degeneracy of 22L−1. This arises
from the symmetry of the Hamiltonian under flipping all of
the spins in any row or column of the square lattice. A result
of the symmetry is that only correlation functions that are
invariant under this symmetry can take finite values, since
there is no spontaneous symmetry breaking in this model.
For example, the two-point correlator

��ij�i+x,j+y	 = �x,0�y,0. �4�

It is clear that this correlator must vanish if either x or y is
nonzero, since flipping either row i+x or column j+y
changes the sign of the correlation function without changing
the energy of the state.

Interestingly the plaquette model also describes �16� the
paramagnetic phase of the eight vertex model �17�. The ad-
ditional presence of ordered states in the eight vertex model
makes it a suitable analogy for a glass former with a thermo-
dynamic melting transition. It turns out that the plaquette
model remains a good description for the supercooled states
below Tc, see Ref. �16�.

B. Static length scales

We now discuss the aspects of the static properties of the
plaquette model that are relevant to the physics of super-
cooled liquids and kinetically constrained models. We men-
tioned above that the concentration of excited plaquettes in
the model is �e�+1�−1. The interesting behavior in the model
occurs at T�1 �so ��1�, in which these excitations are
dilute. We therefore define

c = e−� � 1. �5�

Two typical configurations of the spins at two different low
temperatures are shown in Fig. 1. It is clear that even though
all two-point functions vanish by the symmetry discussed
above, the system is not in a typical paramagnetic state. The
axes of the underlying lattice are apparent, and their influ-
ence is felt even at relatively large length scales.

To understand static correlations we note that excited
plaquettes are topological defects, in the sense that while

their energy cost is localized, removing a single excited
plaquette requires changes in the spin field over large dis-
tances. This is apparent from the behavior of the four-point
correlation function

C4
stat�x,y� = ��ij�i+x,j�i,j+y�i+x,j+y	 , �6�

which is independent of i and j in a translationally invariant
system �or sufficiently far away from the free boundaries of a
finite one�. We have added the superscript stat to emphasize
that we consider here static correlations, as opposed to the
four-point dynamic correlators studied in Sec. III. The sym-
metries of the Hamiltonian mean that �6� is the only non-
trivial four-point function that can have a finite value. Sym-
metries also ensure the vanishing of all the disconnected
parts of that function.

Now, the value of the combination �ij�i+x,j�i,j+y�i+x,j+y is
given by the parity of the number of excited plaquettes in the
rectangular region defined by the four spins. To see this, we
may take x ,y�0 without loss of generality, and write

�ij�i+x,j�i,j+y�i+x,j+y = 

x�=0

x−1



y�=0

y−1

pi+x�,j+y�, �7�

where the pij were defined in �2�. This rewriting relies only
on the fact that the spins are Ising variables so that �ij

2 =1.
The product is over all plaquettes in the rectangular region
and is +1 if there is an even number of excited plaquettes and
−1 if there is an odd number. Thus, if there is only one
excited plaquette in the rectangle, then the product of the
four spins is equal to −1, regardless of x and y. This is a
signature of a topological defect.

When excited plaquettes are dilute the number of excita-
tions in a rectangular region of area �xy� is a Poissonian ran-
dom variable with mean c�xy�. The probability that this vari-
able takes an even value is �1+e−2c�xy�� /2. The four-point
static correlator is therefore

C4
stat�x,y� = e−2c�xy�, �8�

from which one can identify the static correlation length
scale 	4

stat=c−1/2=e�/2. Physically this length scale measures
the typical spacing between excited plaquettes. Clearly this

FIG. 1. Typical spin configurations at �=5 �left� and �=7
�right�. At the lower temperature we identify the excited plaquettes
with circles, which appear as corners in the spin field. At the higher
temperature we only highlight some of the defects because they are
more numerous. The smallest visible length scale is the lattice spac-
ing. All two-point correlations vanish, even between adjacent sites.
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length scale diverges at T=0 where the concentration of de-
fects vanishes.

It is interesting to note that in a standard kinetically con-
strained model where the Hamiltonian is directly expressed
in terms of the relevant excitations, the distance between
defects is trivially related to their concentration. In the
present case, the study of simple structural correlators, e.g.,
two-point structure factors, does not provide information on
these relevant length scales; they are only revealed when
higher-order correlators are considered. More physically this
means that the typical size of black and white domains in
Fig. 1 does not depend on temperature while the concentra-
tion of circles does, so that by naively looking at the inter-
acting spins one would get the wrong impression that there is
no diverging length scale in the system. Taking the analogy
with liquids seriously this suggests that while the structure
factor of supercooled liquids shows no particular trend when
temperature is decreased, higher-order correlators related to
some yet unknown local ordering could reveal the presence
of increasing length scales, as assumed in several scenarii of
the glass transition �18–20�.

The problem with the correlator �6� is that it is highly
specific to the model under study, which has special symme-
tries. It would be more useful to define static quantities
which are independent of the model under study but still
reveal the presence of growing length scales. An idea is that
in the presence of diverging length scales, large fluctuations
can also be expected. Let us consider the two-point quantity,

c2
stat�x,y� =

1

N
�
i,j=1

L

�ij�i+x,j+y . �9�

where the sum is over a finite region of an infinite spin sys-
tem. The number of terms in the sum is N=L2; we will later
take the limit of large L so as to extract a well-defined mea-
sure of the size of fluctuations.

The expectation value of c2
stat is a sum of two-point cor-

relation functions. Equation �4� therefore constrains it to van-
ish in the thermodynamic limit �except in the trivial case, x
=y=0�. In other words, �c2

stat�x ,y�	=�x,0�y,0. However, even
when the expectation value of c2

stat is zero, its fluctuations are
not. One can therefore define the following susceptibility:


2
stat�x,y� = N��c2

stat�x,y�2	 − �c2
stat�x,y�	2� , �10�

where the disconnected part in fact vanishes by symmetry
�except at x=y=0 where it exactly cancels the connected
part, so that 
2

stat�0,0�=0�. The connected part is a sum of
four-point static expectation values, but symmetries of the
model constrain most of these to be zero as well. The only
nonzero terms are either of the form of �6�, or else trivial �for
example ��ij

2 �i�j�
2 	�. Assuming that at least one of x and y is

nonzero, we write out the sums and collect the nonvanishing
terms, arriving at


2
stat�x,y� =

1

N
�

i,i�,j,j�=1

L

��ij�i+x,j+y�i�j��i+x,j�+y	

= �1 − �x,0��1 − �y,0� +
1

N
�

i,j,m=1

L

��x,0C4
stat�i − m,y�

+ �y,0C4
stat�x, j − m�� . �11�

We note that the first term gives a trivial value of unity for

2

stat�x ,y� unless at least one of x or y is equal to zero. This
arises from the four-point correlators with i= i� and j= j�; we
will see shortly that 
2

stat�x ,0� also approaches this trivial
value when x becomes much longer than the relevant corre-
lation length.

The definition of c2
stat contains a dependence on the cluster

size, L. However, the physically relevant limit is when L is
much greater than all correlation lengths in the system; in
this limit then 
2

stat�x ,y� converges to a finite value. From �8�,
we can identify the sums as geometric series: taking care not
to double count the terms with i= i� or j= j�, we find that

lim
L→�


2
stat�x,0� = �

y=−�

�

e−2c�xy� = coth�c�x�� , �12�

for x�0. From these fluctuations we identify a second static
length scale,

	2
stat = c−1 = e�, �13�

which also diverges at T=0. Physically this length scale rep-
resents the mean distance between adjacent excited
plaquettes in the same row or column of the square lattice,
and is therefore much greater than the typical spacing be-
tween excited plaquettes, 	4

stat.
In deriving Eq. �13� we again made use of the special

symmetries of the model, which is an undesired feature of
this treatment. This can be cured by noting that 	2

stat may be
accessed through a circular average,


2
stat�r� � 


0

� d�

2
r

stat�x,y� =

2


r
coth�cr� + 1, �14�

where the integral over � is to be understood as a sum over
the integrand at values of x ,y such that r− 1

2 ��x2+y2�r
+ 1

2 . Thus the length scale 	2
stat can indeed be extracted from

fluctuations of two-point measurements that do not depend
on knowing the exact orientation of the lattice axes or the
special symmetries of the model.

To verify these exact results, we performed static Monte
Carlo simulations to obtain 
2

stat�x ,y� both for y=0 and for
the trivial case x ,y�0 where the susceptibility takes the
value unity. The results are shown in Fig. 2.

C. Inherent structures and droplets

We now discuss the above findings in relation to alterna-
tive approaches to the glass transition that involve growing
length scales of a static nature. A problem with these ap-
proaches is that there exist no numerical or experimental
indications for the presence of such static correlations. How-
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ever two recent papers have discussed methods to detect
growing static length scales in supercooled liquids that we
now discuss in the context of the plaquette model.

Bertin �21� suggested to consider the spatial structure of
inherent structures �22� and studied a one-dimensional disor-
dered Potts model to illustrate his ideas. The procedure is as
follows. Take an equilibrium configuration of the system at
finite temperature T and quench it to its inherent structure.
Now fix the orientation of the spins on the boundary of a
finite portion of the system of linear size �. Finally, minimize
the energy of the finite size system given these boundary
conditions. Bertin finds that there exists a well-defined length
scale, �*�T�, which is such that it is typically possible to find
a lower energy structure when ���*, while the system is
already at its ground state for smaller sizes, ���*.

In the plaquette model, the effect of quenching to T=0 is
that dimers freely diffuse �see below� until they get absorbed,
and then all motion stops. The inherent structure is therefore
a structure with single defects only. On quenching from equi-
librium these defects will be randomly distributed in space,
except that they are never on adjacent sites �since that would
be a dimer�. So, consider a rectangular region of the sample
of linear size �. We may ask, what is the probability that this
region minimizes the energy, subject to its boundaries re-
maining fixed? Fixing the 4��−1� spins that lie on the
boundaries constrains the parity of the number of defects in
each row and in each column. Thus the �possibly degenerate�
ground state of the square region contains at most one defect
in each row or column, according to their parities. It is then
obvious that when ���*�	2

stat there will typically be more
than one defect in each line and column and the inherent
structure will not coincide with the ground state of the finite
size system. We conclude therefore that Bertin’s method
would successfully determine the static correlation length
scale 	2

stat discussed in the preceding section. The main dif-
ference between our model and that of Bertin is that we
cannot identify a tiling of inherent structures with regions
that minimize the energy because our defects are pointlike
objects that obviously cannot delimit a particular area.

In a real space description of the random first order tran-
sition it is imagined that above its static Kauzmann transition

the system is composed of an assembly of entropic droplets
�18�. Revisiting this idea Bouchaud and Biroli proposed to
associate a temperature dependent length scale, 	*�T�, to
these droplets in the following manner �23�. Consider an
equilibrium configuration of the system at temperature T.
Then consider a finite portion of the system of linear size �
and freeze its boundary conditions. Now let this finite size
system evolve at temperature T with its boundary conditions
fixed. If ��	* the system should effectively be nonergodic
while dynamic correlation functions would go to zero at
large times for ��	*.

In the plaquette model this procedure was studied from a
different perspective in Ref. �13� where the thermodynamics
of finite size systems was computed exactly for a particular
choice of boundary conditions. It was found that in a finite
size system there indeed exists a glass transition temperature,
which is manifested by a downward jump in the specific heat
which shifts to lower temperature for larger �. Although this
calculation is not exactly the procedure described by
Bouchaud and Biroli where any sort of boundary conditions
should be studied, it is very close in spirit. Physically, the
nonergodic behavior is due to the fact that when � is too
small the system cannot rearrange without altering its bound-
aries. This happens as above when lines or columns only
contain one or no defect, i.e., when ��	2

stat and we conclude
that the procedure of Ref. �23� would once more yield the
correct correlation length scale, 	*�	2

stat.

D. Diffusing excitations in the plaquette model

We now consider the dynamics of the plaquette model.
The fundamental moves are spin-flips. When a single spin is
flipped the states of the four plaquettes surrounding that spin
must all change. Thus there are five types of move, depend-
ing on the environment of the relevant spin. If a spin has no
adjacent excited plaquettes, then flipping that spin incurs an
energy cost �E=4, so these moves are suppressed by a factor
c4. Now, if a spin is adjacent to exactly one excited plaquette,
then its flips cost �E=2 and are suppressed only by a factor
c2. The density of such sites is approximately c at low tem-
peratures, so these flips are already more significant than
those involving �E=4. Finally spins adjacent to pairs of ex-
cited plaquettes can flip without energy cost, �E=0, and that
those adjacent to three or four excited plaquettes have �E
�0 and will therefore relax rapidly to the low energy state
with one or zero excited plaquettes, respectively.

The key physical point is that excited plaquettes act as
sources of mobility, since the energetic barriers to spin flips
are smaller in those regions. This observation allows us to
identify the excited plaquettes as the excitations in the mo-
bility field by analogy with kinetically constrained models.
The square lattice of the plaquette model has a surprising
effect on the diffusion of these mobility excitations, because
pairs of adjacent excited plaquettes diffuse freely, but are
confined to one dimension, see Fig. 3. As shown in Refs.
�12,13�, this is responsible for the form of the low tempera-
ture divergence of the relaxation time, ��c−3.

E. The froth model

We now introduce a simple model that shares many fea-
tures in its dynamical behavior with the plaquette model.

FIG. 2. Simulation data confirming the analytic results. We
show 
2

stat for y=0 at three different temperatures �filled symbols�;
the solid lines are the result of �12�. We also show that 
2

stat takes the
trivial value of unity when neither x nor y is zero. We use a cluster
of 106 spins to avoid finite size effects.
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Consider a mobility field that is defined on the plaquettes of
a hexagonal lattice. Each defect carries an energy of unity, so
the Hamiltonian takes the trivial form

Hfroth = −
1

2�
i=1

N

ni, �15�

where there is a defect on site i if ni=−1; otherwise ni= +1.
Dynamical moves involve flipping the values of four of the
ni on plaquettes that are related by a Feynman diagram
shape, see Fig. 4. This sort of model was studied in the
context of covalent froths �15�, so we refer to it as the froth
model in what follows. The similarity between Hamiltonians
�3� and �15� is evident but the froth model does not have an
equivalent spin representation.

Comparisons between the dynamics of the froth model
and those of the plaquette model are instructive because the
only difference between their dynamics is the structure of the
underlying lattice. However, while the diffusing pairs of ex-
citations in the plaquette model were confined to one dimen-
sion as a result of the square lattice, Fig. 3, the equivalent
dimers of the froth model are free to diffuse across the whole
two-dimensional plane, Fig. 4.

To first illustrate the strong effect of the choice of lattice
on the dynamics we show typical realizations of the persis-
tence function �2� of each system in Fig. 5. The persistence
function on site i is defined by bi�t , t��=1 if the state of that

site has remained constant for all times between t� and t
+ t�, otherwise bi�t , t��=0. It is clear from Fig. 5 that the
effect of the square lattice is to introduce strong anisotropy
into the dynamic spatial correlations. The remainder of this
paper contains discussions of the dynamic correlations
shown in Fig. 5.

III. DYNAMIC CORRELATIONS

A. Dynamic correlations in the plaquette model

In the preceding section we introduced the persistence
function to quantify dynamics in the plaquette model. This
was a convenient way to compare dynamics between froth
and plaquette models. However the presence of the underly-
ing spin field in the plaquette model means that its dynamics
is more naturally investigated in terms of the spin-spin auto-
correlation

aij�t,t�� = �ij�t���ij�t� + t� . �16�

The two-time form of this operator makes it more natural
than the persistence function which depends on the spin at all
times between t� and t�+ t.

A typical realisation of aij�t , t�� is shown in Fig. 6. The
autocorrelation function retains slightly more information
than the persistence function. If the system makes an excur-
sion to an excited state before returning to its initial one, then
the autocorrelation function records the fact that the overall
state has not changed, but the persistence function does not.
For this reason, the autocorrelation data shows the spatial
correlations more clearly than the persistence data.

We now investigate the anisotropic dynamic correlations
in the plaquette model more carefully. Consider the two-
point, two-time �i.e., four-point� correlation function

C̃2,2�x,y,t� = �aij�t,t0�ai+x,j+y�t,t0�	 − �aij�t,t0�	�ai+x,j+y�t,t0�	 .

�17�

In equilibrium this function is independent of �i , j , t0� since
the system is invariant under translations in both space and

FIG. 3. Sketch of a dimer explaining the origin of the strongly
anisotropic dynamical correlations in the plaquette model. Excited
plaquettes are marked with a � sign. Spins are marked by small
circles but the state of the spins is not shown. The dimer diffuses
along the x direction with no energy barrier. Open circles mark
spins that can be flipped as part of this free diffusive process. Flip-
ping of spins marked by closed circles costs at least �E=2.

FIG. 4. Two possible moves in the froth model. The binary
variables ni are defined on the hexagons. The + and � signs mark
sets of four ni. A single move involves flipping all four of any such
set. The Feynman diagram shapes are shown in bold.

FIG. 5. Realizations of persistence function in the plaquette
model �top� and the froth model �bottom�. Plaquettes that have
flipped between time zero and time t are coloured black. The time t
is such that the fraction of black plaquettes is approximately 0.4.
Both simulations are at �=5 and show regions of size 200�200.
The strong anisotropy in the top panel is purely a result of the
underlying square lattice in the plaquette model.
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time. It is convenient to discuss also normalized correlations,

C2,2�x,y,t� =
C̃2,2�x,y,t�

1 − �aij�t,t0�	2 , �18�

so that C2,2�0,0 , t�=1.
We are more particularly interested in the scaling of C2,2

at low temperatures. We find that the scaling contains contri-
butions from diverging length and time scales, consistent
with the presence of a dynamical critical point at T=0. For
example, the on-site autocorrelation function �aij�t , t��	
obeys the scaling relation �12� �aij�t , t0�	= f1�c3t�. However
the spatial scaling is not as simple as this temporal relation.
It is clear from Fig. 6 that the presence of the underlying
square lattice is relevant to C2,2 even at low temperatures.

We have investigated the function C2,2 in some detail us-
ing Monte Carlo simulations with a continuous time algo-
rithm �24�. Since there is a correlation length proportional to
1/c in the static properties of the system, it is necessary to
use rather large system sizes. We use periodic boundary con-
ditions, which require systems large enough that typical rows
and columns of the lattice contain at least two excited
plaquettes. Otherwise there are rather strong finite size ef-
fects, as observed in Ref. �13�. Typically we use system sizes
of 106 spins. The typical error bars are of the order of the
symbol sizes in the figures, except where noted otherwise.
Time is measured in Monte Carlo sweeps throughout and all
distances are in units of the lattice spacing.

In Fig. 7 we show the strong correlations in C2,2 along the
axes of the model, and their rapid decrease away from those
axes. In order to show data at different temperatures, we use
times t that scale with c−3 so that �aij�t , t��	 is the same at
each temperature. We see that the length scale associated
with C2,2�x ,0 , t� grows rapidly at low temperatures while the
off-axis correlations measured by C2,2�x ,x , t� are weak and

do not depend strongly on �. In the representation of Fig. 6,
C2,2�x ,0 , t� measures the typical length of the rodlike ob-
jects, which gets large at small temperatures. However, the
absence of correlations away from the axes of the lattice
indicates a lack of correlation between those objects. The
microscopic origin of this behavior is in the one-dimensional
diffusion of pairs of excited plaquettes sketched in Fig. 3.

We now consider the full time and space dependence of
C2,2�x ,0 , t� in a little more detail. It is convenient to start the
discussion by focusing on the corresponding dynamical four-
point susceptibility �25,26�


2,2�t� = �
xy

C2,2�x,y,t� . �19�

This quantity is proportional both to the typical correlation
area and to the strength of the correlations. From Fig. 7 we
expect C2,2�x ,0 , t����t�f�x /	2,2�t�� at large x �see also be-
low� so that we may write


2,2�t� � ��t�	2,2�t�df . �20�

In this expression df is the fractal dimension associated with
the correlations, 	2,2�t� the linear size of a correlated region,
	2,2

df its area and the quantity ��t� measures the strength of the
correlations. We show 
2,2�t� at several temperatures in Fig.
8 �top�. There are three distinct regimes in this function, a
power law increase at small times; a broad maximum whose
width increases with decreasing temperature; and a rapid de-
crease at larger times.

These data are easily interpreted in terms of the excita-
tions described in Sec. II. At short time scales the rodlike
objects shown in Fig. 6 grow in a diffusive manner. These
objects have df =1, and we therefore expect 
2,2�t�
��t1/2�df=1, as observed in Fig. 8. Moreover this behavior is
independent of c since a pair of excited plaquettes can dif-
fuse at no energy cost.

At larger times, dimers that have diffused can be absorbed
on encountering an isolated excited plaquette, preventing fur-
ther growth of the rods. The dynamic length scale therefore
saturates to the mean distance between isolated defects along
one direction of the square lattice. This is precisely the

FIG. 6. Typical realisation of the autocorrelation in the plaquette
model. Sites with aij =−1 are colored black. The inverse tempera-
ture is �=5 and the time scale is such that �aij	�0.6. This figure is
from the same time series as for the persistence field in Fig. 5 �top�
but the time t is longer because most of the contributions to the
persistence are from dimers that are reabsorbed at their emission
point.

FIG. 7. Plots of C2,2�x ,y ,c3t� with y=0 and with y=x, as a
function of r=�x2+y2. Times are such that c3t=0.07 so that
�aij�t , t��	�0.5. The length scale for on-axis correlations increases
with decreasing temperature, but there is no scaling for the off-axis
correlator.
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physical content of the static length scale 	2
stat�c−1 discussed

above. Since the process is diffusive, saturation of 	2,2 to 	2
stat

takes place at a time scale given by

�sat � c−2. �21�

Saturation at time �sat is observed in the numerical data, as
shown in the middle frame of Fig. 8.

Finally, after saturation there is little change in the corre-
lations until the susceptibility starts to decrease for times t
�c−3. Scaling in this late-time regime is governed by the
time dependence of the factor ��t� in Eq. �20� which starts to
decrease significantly when the rods start to overlap. When
two rods cross the site at which they intersect has flipped
twice. It therefore has aij = +1, unlike the rest of the rod

which has aij =−1. This effect takes place on the time scale
set by the autocorrelation function, which scales as ��c−3

��sat. This behavior is confirmed in the bottom panel of Fig.
8 where the scaling of �aij	 is also shown.

B. Dynamic scaling in the plaquette model

We now discuss the spatial structures in C2,2�x ,0 , t�, and
their scaling. At small times, pairs of defects diffuse in one
dimension. Dynamic correlations only depend on x /	2,2�t�
�x / t1/2, and the scaling of 
 is consistent with df =1. In this
time regime we may identify a dynamical exponent, z=2. At
larger times, �sat� t, the dynamical lengthscale saturates at
	2,2�t��	2

stat. This saturation of the dynamic length scale re-
flects the fact that the typical distance that a dimer travels
before being absorbed is given by 	2

stat. We may identify this
length as a mean free path for dimers diffusing along one-
dimensional paths. Thus the structure of dynamical correla-
tions is explained in terms of the constrained one-
dimensional motion of diffusing pairs of defects. The
behavior may be summarized as

C2,2�x,0,t� = � f2a�x2/t� , c2t � 1,

f2b�c3t�f2c�cx� , c2t � 1.
� �22�

We illustrate this behavior in Fig. 9. The function f2a is
shown in the top panel, along with our theoretical prediction
for it �Eq. �23�, discussed below�. In the middle panel, we
show the spatial correlations at various times that are all
greater than the saturation time. The spatial dependence of
the correlations is not changing, while their strength gets
weaker and scales with the relaxation time c−3. Finally, we
may normalize the correlations by their spatial integral as a
way to extract the scaling function f2c�cx� in the bottom
panel of Fig. 9.

Note that these scaling plots contain no free parameters.
There remain small deviations from scaling arising from the
presence of the lattice at small distances and from the fact
that the two time scales �sat and � are not infinitely separated.
However Fig. 9 is clear evidence that the dynamical correla-
tions are well described by independent random walkers in
one dimension, with a mean lifetime of approximately �sat.

We may evaluate exactly the function f2a�x2 / t�, which
gives the value of C2,2�x ,0 , t� for times much smaller than
the saturation time. The four spin function aij�t , t0�ai+x,j�t , t0�
takes the value −1 if either �1� a dimer starts between the
sites �i , j� and �i+x , j� and diffuses out of that region, or �2�
a dimer starts outside that region and diffuses into it, or �3� a
dimer diffuses along the y direction, flipping one of the
spins, or �4� some more complicated process occurs, involv-
ing two dimers or the absorption or emission of a dimer by
an isolated excited plaquette.

Assuming that the dimers diffuse freely then the first three
processes mentioned above are easy to analyze by manipu-
lation of the diffusion equation in one dimension. We arrive
at the following result for C2,2�x ,0 , t�:

f2a�x2/t� =
1

2�e−x2/2t − �

x

�2t
erfc� x

�2t
�� + O�c2� ,

�23�

where erfc�x���2/�
��x
�dy e−y2

.

FIG. 8. Top, plots of 
2,2�t� at various temperatures. Middle,
rescaling of time to c2t showing saturation at c2�sat�1. Lines are a
power law, t0.5, consistent with diffusive motion, and a horizontal
plateau showing saturation at c
2,2�0.6. Bottom, rescaling of time
to c3t showing decrease of correlations due to decreasing � which
scales in the same way as the spin-spin autocorrelation functions.
�The autocorrelation functions are displayed as the data that col-
lapse on the dotted line.�
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In deriving this result we assumed that only dimers
present at t= t0 affect the spins, and that these dimers diffuse
freely throughout the system. This assumption breaks down
when the dimers present in the initial state start to encounter
isolated defects, where they are absorbed. This is the physics
behind the collapse in the middle panel of Fig. 8; and hap-
pens when c2t reaches a value of order unity. The absorption
of the dimers cuts off the growth of the dynamical length
scale, leading to shorter range correlations than those pre-
dicted, as is visible from the top panel of Fig. 9. In particular,
we note that the correspondence between theory and simula-
tion is best for small times �compared to �sat�.

A final comment on dynamic scaling and critical behavior.
Usually near critical points, the behavior is determined only

by long length scales, the symmetries of the Hamiltonian,
and dynamically conserved quantities. In the plaquette
model, the short length scales associated with the underlying
lattice are relevant even at very small temperatures, as can be
seen by the strongly anisotropic behavior of C2,2�x ,y , t�.
However the vanishing of the static correlation function,
C4

stat�x ,y�, away from the axes of the underlying lattice is a
result of the symmetries of the Hamiltonian. The similar re-
duction of C2,2�x ,y , t� has its origin in a conserved quantity,
namely the number of excited plaquettes in every row and
column of the square lattice which is conserved modulo 2.
This is the reason for the confinement of dimers to one di-
mension. The absence of any such conserved quantity in the
froth model explains why it is so different from the plaquette
model.

C. Suppression of diffusion in the plaquette model

This subtle difference between froth and plaquette models
can be made more spectacular when an aging situation is
considered. It is known �15� that the aging behavior of the
froth model after a quench from high temperature is consis-
tent with diffusion and annihilation of defects, A+A→0, and
has therefore an energy density that decays as �log t� / t in two
dimensions.

In the plaquette model, the conservation of the parity of
the number of excitations in each row or column implies that
a single defect cannot simply diffuse. Accordingly, we show
in Fig. 10 that the aging behavior of the plaquette model is
moved out of a simple annihilation-diffusion regime, and the
energy density decays much more slowly than �log t� / t. In
Ref. �16�, we showed that this decay can also be fitted satis-
factorily by a power law t−0.45 �arising from an decay equa-
tion �tu�u2.2 where we attributed the anomalous exponent to
a fluctuation correction�. We will argue below that the fluc-
tuation correction is in fact logarithmic; we also note that the
same decay was recently fitted on a much smaller time win-

FIG. 9. Top, data collapse of C2,2�x ,0 , t� on rescaling of space
by t1/2 independently of c. The solid line is the prediction for this
function, assuming free �one-dimensional� diffusion of pairs of ex-
cited plaquettes, valid for times t��sat �Eq. �23��. Middle, scaling
of C2,2�x ,0 , t� for t��sat. We plot temperatures between �=4 and
�=5.5 for different scaled times c3t=1, 2, 3, 4, 5 �top to bottom�.
Errors are smaller than the distances between traces. Bottom, col-
lapse of the data of the middle panel using C2,2�x ,0 , t� / �c
2,2�t��
showing the scaling function f2c�x� in Eq. �22�.

FIG. 10. Time decay of the density of defects, u, after a quench
from infinite temperature. �Inset� Data for �=5 and �=6. The ini-
tial plateau at short times is a signature of the onset of activated
dynamics, common to many facilitated spin models. As the density
of excited plaquettes falls, the system enters a state in which the
vast majority of spins must overcome an energy barrier in order to
flip. Thus the dynamics slows down, see �6�. The final plateau is
equilibration at a density �1+e��−1. �Main frame� Quench data from
long times, at �=5, 6, 7; these collapse as a function of rescaled
time c2t, until such time as the system equilibrates. The dotted line
is a fit: A�log�Bc2t� / �c2t� with �A ,B�= �0.02,90�.
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dow as t−1/3 �13�, invalidated by our simulations performed
on much larger time scales.

To explain this behavior, we recall that in two-
dimensional annihilation-diffusion processes the effective
rate equation is

u �
log t

Dt
+ O�t−1� , �24�

where u= �H /N+1/2	 is the density of excited plaquettes,
and D is the diffusion constant. In the plaquette model any
diffusive step in fact involves movement of at least two ex-
cited plaquettes. The simplest such horizontal moves involve
isolated excited plaquettes in either the same row, or in ad-
jacent rows, as in Fig. 3, where one isolated defect has
moved by emitting a dimer. This pair must then be absorbed
by the other isolated excited plaquette, or the system will
revert to its original configuration. If the separation of the
two isolated excitations is d�1 then the probability of the
dimer traveling across the gap is approximately d−1 �13�. The
diffusion constant is therefore proportional to e−2��d−1	
where the exponential prefactor arises from the activation
barrier to dimer creation.

In equilibrium one has �d−1	�1/	2
stat�c. The diffusion

constant and inverse relaxation time are both proportional to
c−3. Out of equilibrium we should also consider correlations
in the density of excited plaquettes. However these correla-
tions take place on a length scale �u−1/2, which is much
smaller than the likely values of d. Therefore we neglect
these fluctuations to get D�u. Substituting into Eq. �24�, we
find that

u �� log t

t
. �25�

This prediction is in reasonable agreement with Fig. 10.
However very many decades of time would be necessary to
confirm beyond any doubts this particular form of logarith-
mic corrections.

D. Dynamical correlations in the froth model

Having described the dynamical correlations of the
plaquette model in some detail, we can understand the cor-
relations in the froth model rather easily. There is no restric-
tion on defect concentration in rows and columns of the hex-
agonal lattice, so the anisotropic behavior of the plaquette
model is absent. However the phenomenology is a simple
generalization of the behavior described above.

In the absence of spin degrees of freedom, we consider
the persistence function bij�t , t�� instead of the autocorrela-
tion function as a local dynamical function. That is, we de-
fine

C2,2� �x,y,t� =
�bij�t,t0�bi+x,j+y�t,t0�	 − �bij�t,t0�	2

�bij�t,t0�	 − �bij�t,t0�	2 , �26�

where the prime indicates that we deal with persistence
rather than autocorrelation functions. In the plaquette model,
the scaling of C2,2� �x ,y , t� is very similar to that of
C2,2�x ,y , t�, compare Figs. 5 and 6. Therefore it is sensible to

compare C2,2� for the froth model with C2,2 for the plaquette
model. Further, since we will find C2,2� to be isotropic for all
but the smallest length scales in the froth model, we write its
circular average as C2,2� �r , t� and use this latter correlation
function in what follows.

To generalize the arguments of Sec. III B to the froth
model, we first recall that for random walkers in two dimen-
sions, the typical distance traveled in time t scales as t1/2, but
the typical number of sites visited by the walker scales as
t / log t. Logarithmic corrections arise because d=2 is a mar-
ginal dimension for free random walks, see Ref. �27� and
references therein.

We expect therefore the following generalization of the
three regimes observed in the plaquette model. At small
times we expect the length scale to grow as 	2,2� � t1/2 and the
susceptibility to grow with the number of visited sites, 
2,2�
� t / log t. Saturation occurs at a length scale controlled by
the mean free path of diffusing dimers, which scales as c−1/2

and represents the separation of free excitations which ab-
sorb the dimers. We note that this length scale is smaller than
the mean free path of the plaquette model, which was the
typical separation between single defects in the same row or
column of the square lattice. Since the scaling is diffusive,
saturation will occur at a time, �sat� / log �sat� �c−1. The decay
of the susceptibility will finally be controlled by the decay of
the persistence function on a time scale given by � / log �
�c−2.

To illustrate these predictions, we first show the persis-
tence function in Fig. 11, plotted as a function of the naively
rescaled variable c2t, and also against the more appropriate
variable c2t / log t. Since we work over only a few decades of
time, we may also obtain reasonable fit to a form c�t, but the
logarithmically corrected variable which has no free param-
eters appears indeed as the appropriate one.

FIG. 11. Two scaling plots of the persistence function in the
froth model, showing the effect of logarithmic corrections in two
dimensions
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In Fig. 12 we show the susceptibility associated with the
persistence function


2,2� �t� = �
xy

C2,2� �x,y,t� . �27�

Saturation takes place at a value of 
2,2� that is proportional to
c−1 and the approach to saturation is a universal function of
ct / log t. The susceptibility then decays on the time scale of
the persistence function.

The collapse of the persistence and of the susceptibility
with a single rescaled time variable is consistent with their
dependence on the number of sites visited by each random
walker. When considering spatial correlations, the situation
is slightly more complicated. While the relevant areas scale
as t / log t, the distances traveled by walkers are distributed as
universal functions of r2 / t. We therefore expect that while

the susceptibility varies as a scaling function of t / log t, the
moments of the probability distribution should have a normal
diffusive behavior. That is, we expect


2,2� �t� =
 2
rdr C2,2� �r,t� � t/log t , �28�

but simultaneously


 2
rdr rnC2,2� �r,t�


 2
rdr C2,2� �r,t�
� tn/2. �29�

These relations were proved recently in Ref. �27� for nonin-
teracting random walkers in two dimensions and unnormal-
ized dynamic spatial correlators. An alternative statement of
Eq. �29� is that

C2,2� �r,t� =

2,2� �t�

t
f3� r2

t
�, t � �sat, �30�

which should be valid for r�1. This scaling relation must
break down at small distance since both C2,2� �0, t� and 
2,2� �t�
are scaling functions of t / log t, incompatible with �30�.

We test the collapse of Eq. �30� in Fig. 13. There are tiny
deviations at small r2 / t as expected. Moreover we get rea-
sonable agreement with the analytical results of Ref. �27�
which predict

tC2,2� �r,t�

2,2� �t�

=
1

2
D



1

�

dx�1

x
−

1

x2�e−xr2/2Dt, �31�

where D is the diffusion constant of the random walkers. The
diffusion constant for dimers in the froth model will be of
order unity since the moves carry no energy penalty. In Fig.
13 we show reasonable fit with D=1. We note that the
dimers diffuse in a zig-zag fashion. A given dimer makes

FIG. 12. Top, plots of 
2,2� �t� at various temperatures. Middle,
rescaling of time to ct / log t showing saturation at c�sat / log �sat�1.
Lines are the random walk prediction �t / log t and a horizontal
plateau showing saturation at c
2,2� �1.8. Bottom, rescaling of time
to c2t / log t showing decrease of correlations which scales as the
persistence function in Fig. 11.

FIG. 13. Scaling plot of �tC2,2� /
2,2� � as a function of the reduced
variable r2 / t. The full line is the independent random walk predic-
tion �31� derived in Ref. �27�. The fit is valid for r�1 so the
deviations at small r are greatest at small t. The deviations at large
r are of the order of the numerical uncertainty in our simulations,
but might also be an effect of the zig-zag motion of the dimers.
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random steps of length unity along two nonorthogonal direc-
tions that depend on the relative position of the two defects
that form the dimer �this orientation is constant as the dimer
diffuses�. This zig-zag motion will lead to a reduction in the
diffusion constant. Since there are only three possible dimer
orientations, there is also the possibility of anisotropy in the
correlations, but this was not observed in our simulations.
Since the scaling of Fig. 13 is good and the fit reasonable, we
do not attempt any more rigorous analysis of these effects.

Finally we consider the behavior of the dynamic length
scale at saturation. The number of sites visited by a walker
increases as �t / log t�. Since the absorbing sites are uniformly
distributed the walker will be absorbed on a time scale sat-
isfying �sat�c−1 log �sat. In that time the walker travels an
average distance

	sat � �sat
1/2 � c−1/2�log c−1 + O�log log c−1��1/2. �32�

In Fig. 13 �top� we present scaling of the saturated correla-
tion function according to this law. We also show in Fig. 13
�bottom� that when times become of the order of or larger
than the persistence time, the change in the susceptibility

2,2� �t� is mainly due to a change in the strength of the cor-
relations while the dynamic length scale 	2,2� is approxi-
mately constant, just as in the plaquette model. We attribute
the weak decrease of the correlation length at the longest
times to the fact that the persistence function retains rather
little information for times much greater than the relaxation
times �. As a consequence the free random walk calculations
in Ref. �27� do not apply at large times because they do not
take saturation effects into account.

To summarize the results of this section, we have shown
that the froth model behaves similarly to the plaquette model
with a mean free path for dimers that scales as c−1/2 and a
relaxation time scale that scales as c−2 with important loga-
rithmic corrections due to the dimensionality of the random
walks performed by freely diffusing dimers.

IV. CONCLUSION

The plaquette model is a spin model with simple dynam-
ics and no finite temperature thermodynamic singularities. Its
Hamiltonian gives rise to effective kinetic constraints, and
therefore to dynamical heterogeneity. Despite simple thermo-
dynamics in the plaquette representation, spins have static
correlations whose length scales diverge at low temperature.
The symmetries of the Hamiltonian mean that only rather
specific correlation functions have nonzero expectations.
However, measurement of the fluctuations in two-point
quantities allow extraction of the relevant length scales.

Spatial correlations are strongly anisotropic. For static
correlations, this is the result of a symmetry of the spin sys-
tem. Dynamical correlations are anisotropic because of a mi-
croscopic conservation law. We have identified three length
scales in the plaquette model. The mean spacing between
excited plaquettes, 	4

stat�c−1/2 controls four-point static cor-
relations. Fluctuations in two-point structure factors are con-
trolled by 	2

stat�c−1 which represents the mean distance

between adjacent excited plaquettes in the same row or col-
umn. Finally there is a dynamical length scale 	2,2�t� whose
behavior is diffusive at small times and saturates to 	2

stat at
larger times.

We also identified two time scales in the system. The first
is the saturation time, �sat�c−2, which separates the regime
in which dynamical correlations have an increasing length
scale from the regime in which their length scale is saturated.
The second is the relaxation time ��c−3 which represents
the typical time for the spin field to lose the memory of its
initial configuration. This separation of time scales arises
from the nontrivial conserved quantities at the zero tempera-
ture dynamical fixed point. We also showed that these effects
lead to unusual aging behavior.

We explained the dynamical length and time scales in the
plaquette model in terms of diffusion of excitation pairs
along one-dimensional paths. We showed that the froth
model correlations are obtained by generalizing these results
to allow the excitation pairs to diffuse in two dimensions.
This introduces logarithmic correlations, but once these have
been taken into account the scaling is as expected for nonin-
teracting random walkers.

The results connecting static and dynamic correlations in
the plaquette model demonstrate one specific mechanism
by which a mobility field emerges from a more familiar

FIG. 14. Top, plot of C2,2� in the state with a saturated correla-
tion area showing good scaling as a function of r�c log�1/c�. Bot-
tom, plot of C2,2� �r� at logarithmically spaced times between 0.3�
and 10�, with �=7. As time increases, the strength of the correla-
tions decreases by two orders of magnitude. On the other hand, the
gradient of these traces at large distances gives the correlation
length which is decreasing rather slowly with time �we show dashed
lines marking e−r/25 and e−r/20�. We constrast this behavior with the
unsaturated regime in which the correlations are always strong, and
the correlation length increases as t1/2.
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interacting spin field. They are relevant to the description of
structural glasses in these terms. The fact that all of the dy-
namical correlations can be explained in terms of indepen-
dent random walkers provides further evidence that this be-
havior is rather universal in systems with dilute diffusing
defects.
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